MOLLICUTES

DR.FAWZIAH ALI

- The mollicutes are members of the order Mycoplasmatales and class Mollicutes (Latin: *mollis*, soft; *cutis*, skin).
- The genera *Mycoplasma* and *Ureaplasma* have pathogenic species important in veterinary medicine.

• Members of the *Acholeplasma* are sometimes encountered, but usually as contaminants.

- Hemotrophic rickettsial species of the genera *Haemobartonella* and *Eperythrozoon* were reclassified to the genus *Mycoplasma*. They have been given the common name "hemoplasmas."
- Infections with mollicutes are parasitic in nature. They are most often subclinical to mild but fatal diseases can also be observed.
- Most pathogenic mycoplasmas and ureaplasmas infect the mucosa of the respiratory and/or urogenital tract, conjunctiva, synovial surfaces, and mammary glands.
- The hemoplasmas infect red blood cells and cause hemolytic anemia

MORPHOLOGY AND STAINING

- Cell shapes include spherical, ring-shaped, pear shaped, spiral-shaped, and filamentous forms. Ring forms found in red blood cells infected with hemoplasmas.
- Mollicutes stain poorly by the Gram method due to their lack of a cell wall.
 Giemsa, Castaneda, Dienes, cresyl-fast violet, orcein, and acridine orange stains are preferred.
- Mollicute colonies are small and difficult to visualize with the unaided eye.
 When observed with a dissecting microscope, many species exhibit a "fried egg" morphology. Ureaplasma species produce smaller colonies than other mollicutes and lack the fried-egg colony morphology.

STRUCTURE AND COMPOSITION

- The mollicutes lack the genetic capacity to produce a cell wall.
- They are bound by a single trilaminar membrane composed of proteins, glycoproteins, lipoproteins, phospholipids, and sterols.
- Cholesterol in the membrane provides osmotic stability.
- Exogenous sterols are required by mycoplasmas that they acquire from serum.
- The mollicutes have a small genome relative to other bacteria and are the smallest self-replicating organisms that have yet been described.

Nonhemotrophic Mollicutes

- Clinical manifestations include respiratory and urogenital tract infections, conjunctivitis, arthritis, mastitis, septicemia, and otitis media. Most species exhibit a high degree of host specificity
 - Unlike the "hemotrophic", they can be grown *in vitro* on lifeless media.
 - slow growing and often require 3–10 days (or more) of incubation before colonies are apparent on agar.
 - In vitro growth is generally best at 33–38 °C in an atmosphere of inscreased CO2.

Pathogenesis

host.

- The immune response of the host is intimately involved in the pathogenesis of disease (immunopathology).
- The chronicity of mollicute infections suggests that the immune response is not effective at eliminating infection once established, and latent infections are common.
- There is evidence that some Mycoplasma and Ureaplasma species can penetrate and exist inside nonphagocytic cells, protecting them from the immune system and facilitating their dissemination within the

- Attachment to host cells is the first step in establishing infection and is facilitated by the anionic surface layer on most mycoplasmas.
- Host receptors for attachment are surface proteins, especially glycoconjugates that allow colonization of mucosal surfaces.
- Several mycoplasmas readily form biofilms that are a community of individual organisms living in a matrix of extracellular polymeric substance as a means of avoiding the host immune response and antibiotic therapies.
- Injury to host tissue may also be induced through other mechanisms.
 Products of metabolism such as hydrogen peroxide and superoxide radicals in mycoplasmas result in local host cell damage.

Animal Species	Agent	Common Clinical Manifestations
Cats	M. felis	Conjunctivitis
	M. feliminutum	Respiratory disease
	M. gatae	Arthritis
Cattle	M. alkalescens	Arthritis, mastitis
	M. bovigentialium	Infertility, mastitis, seminal vesiculitis
	M. bovis	Abscesses, arthritis, mastitis, otitis, pneumonia
	M. bovoculi	Keratoconjunctivitis
	M. californicum	Arthritis, mastitis
	M. canadense	Arthritis, mastitis
	M. dispar	Alveolitis, bronchiolitis
	M. diversum	Infertility, pneumonia, vulvovaginitis
	M. mycoides ssp. mycoides (SC)	Arthritis, pleuropneumonia
	M. wenyonii	Anemia
Chickens	M. gallisepticum	Respiratory disease
	M. synoviae	Airsacculitis, sternal bursitis, synovitis
Dogs	M. canis	Urogenital tract disease
	M. cynos	Pneumonia
	M. spumans	Arthritis
Felids	M. felifaucium	Respiratory disease
	M. leocaptivus	Respiratory disease
	M. leopharyngis	Respiratory disease
	M. simbae	Respiratory disease
Goats	M. agalactiae	Agalactiae, arthritis, conjunctivitis
	M. capricolum ssp. capricolum	Arthritis, mastitis, pneumonia, septicemia
	M. capricolum ssp. capripneumoniae	Pleuropneumonia
	M. conjunctivae	Keratoconjunctivitis
	M. mycoides ssp. mycoides (LC)	Abscesses, arthritis, mastitis, septicemia
	M. mycoides ssp. capri	Pneumonia
	M. putrefaciens	Arthritis, mastitis

Laboratory Diagnosis

- Sample Collection. The appropriate sample for isolation attempt is determined by the clinical presentation and includes –exudates
 - swabs from
 - 1. affected sites 2. affected tissues. 3. milk.
 - **Direct Examination.**
- The variability in microscopic morphology and poor staining with the Gram method make direct examination for most mollicutes unrewarding.
- Immunoperoxidase, immunofluorescent, and immunohistochemistry staining of histopathologic sections.

- Isolation of Mycoplasma (Culture) –
- Semi solid enriched medium containing 20% horse or human serum, yeast extract & DNA. Penicillin & Thallium acetate are selective agents. (serum – source of cholesterol & other lipids)
- **1. Incubate aerobically or an aerobically for 7 -12 days**
 - with or without 5–10% CO₂ at 35-37°C. (temp range
- 22- 41°C, parasites 35- 37°C, saprophytes lower temp) 3.Typical "fried egg" appearance of colonies
- 4. Colonies best seen with a hand lens after staining with Diene's method.

Identification of Isolates

- * Growth Inhibition Test inhibition of growth around discs impregnated with specific antisera.
- ***** Immunofluorescence on colonies transferred to glass slides.
- ***** Molecular diagnosis
 - PCR-based tests are
- * being developed and these are expected to be the diagnostic test of choice in the future.
 - These should have good sensitivity and be specific